
Can Test Generation and Program Repair Inform
Automated Assessment of Programming Projects?

Ruizhen Gu
School of Computer Science

The University of Sheffield
Sheffield, UK

rgu10@sheffield.ac.uk

José Miguel Rojas
School of Computer Science

The University of Sheffield
Sheffield, UK

j.rojas@sheffield.ac.uk

Donghwan Shin
School of Computer Science

The University of Sheffield
Sheffield, UK

d.shin@sheffield.ac.uk

Abstract—Computer Science educators assessing student pro-
gramming assignments are typically responsible for two challeng-
ing tasks: grading and providing feedback. Producing grades that
are fair and feedback that is useful to students is a goal common
to most educators. In this context, automated test generation and
program repair offer promising solutions for detecting bugs and
suggesting corrections in students’ code which could be leveraged
to inform grading and feedback generation. Previous research on
the applicability of these techniques to simple programming tasks
(e.g., single-method algorithms) has shown promising results,
but their effectiveness for more complex programming tasks
remains unexplored. To fill this gap, this paper investigates
the feasibility of applying existing test generation and program
repair tools for assessing complex programming assignment
projects. In a case study using a real-world Java programming
assignment project with 296 incorrect student submissions, we
found that generated tests were insufficient in detecting bugs in
over 50% of cases, while full repairs could only be automatically
generated for only 2.1% of submissions. Our findings indicate
significant limitations in current tools for detecting bugs and
repairing student submissions, highlighting the need for more
advanced techniques to support automated assessment of complex
assignment projects.

Index Terms—Automated Assessment, Test Generation, Pro-
gram Repair

I. INTRODUCTION

Learning computer programming is challenging, and effec-
tive assessment in higher education is key for helping students
track their progress and learn from mistakes. In modern Com-
puter Science education, assessing programming assignments
usually involves grading and providing feedback, both critical
for students to understand their progress, identify errors, and
enhance their skills [1]. Traditionally, educators manually
or semi-automatically evaluate each student submission to
determine correctness and provide personalized feedback [2].
However, this is a time-intensive task, particularly with large
classes with hundreds of students and tight academic sched-
ules. To alleviate manual efforts, educators seek automation for
various assessment tasks, e.g., automated grading [3], feedback
generation [4], and synthesis of code explanations [5].

Test-based grading is one of the primary approaches for
evaluating student submissions in a (semi-)automated way [1].
Typically, as part of the assignment creation process or prior
to the submission deadline, educators manually craft a test
suite that embodies the assignment requirements to assess the

correctness of student submissions. These tests aim to capture
key functionalities that students are expected to implement
in their submissions. The outcome of executing this test suite
against each student submission can then be mapped to grades
given to students (e.g., top grades if all tests pass) and test
failure messages can be used as feedback.

While popular, the above test-based grading approach has
shortcomings, not least because manually creating a high-
quality test suite can be very costly for educators. Tests
with low granularity (i.e., those that only assess broad func-
tionalities) may fail to detect faults in student submissions,
potentially leading to incorrect judgments [3]. On the other
hand, writing tests with high granularity (i.e., covering all
possible test scenarios and corner cases) requires a lot of effort
and time not always available to educators.

To address the challenges of manual test creation, automated
test generation techniques have been proposed as a means
to reduce manual effort and increase test quality [6]. The
expectation is that test generation can enhance test granularity,
leading in turn to more accurate fault detection and fairer,
more precise evaluation of student submissions. Additionally,
useful feedback could be derived from the generated tests by
reporting the failing tests and error messages to students. Con-
sequently, automated test generation offers a valuable proxy
for both grading and feedback in programming assignments.

But even when high-quality (incl. automatically generated)
tests are available, the feedback provided by failing tests is
often insufficient for students, particularly novice program-
mers, who struggle to map failing test executions back to
specific errors in their code [4]. One approach to mitigate
this involves leveraging automated program repair (APR)
techniques. APR has seen rapid development in recent years,
showing applicability in industrial settings to repair real-world
faults [7] and also in educational contexts, offering more
meaningful feedback to students for introductory programming
assignments [8]. APR takes a buggy program with tests,
including failing ones, as input and attempts to change the
original program so that all the tests pass. In education,
program repair can provide students with more actionable
feedback by recommending potential corrections (i.e., repairs)
for mistakes in their code. This feedback is meant to offer
students insights on how to proceed, helping to address their

979-8-3315-0814-2/25 © 2025 IEEE

Accepted for publication by IEEE. © 2025 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/ republishing
this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

ICST 2025, Naples, Italy
Education Track

699



mistakes and guiding them toward a complete solution [1].
Although automated test generation and program repair

have potential applicability in grading and feedback generation
tasks to inform automated assessment, their effectiveness has
been evaluated primarily on introductory programming assign-
ments. These assignments typically require the implementation
of a single-method routine using basic control flow and
data structures (e.g., “sort the elements in an input array”).
Common datasets used in these evaluations, such as those from
massive open online courses (MOOCs), the IITK dataset [9],
and a subset of the FalconCode dataset [10], fit this pro-
file [6, 8, 11]. To the best of our knowledge, the application of
test generation and program repair for automated assessment
in the context of more complex programming assignments has
not been investigated to date.

In this work, we seek to establish the feasibility of using ex-
isting test generation and program repair techniques to under-
pin automated assessment for more sophisticated programming
assignment projects [10, 12]. These projects represent a step up
in complexity from introductory assignments, often requiring
the application of more advanced programming concepts (e.g.,
object-oriented programming and design patterns), and the
implementation of multiple code files with interconnected
functionalities. Consequently, they present further challenges
for both grading and feedback generation. Can existing au-
tomated test generation and program repair techniques keep
up and support educators in detecting faults and repairing
incorrect submissions with this increased level of complexity?

We conduct and report on a case study using a dataset
from a real-world programming assignment project from a
Java Programming university course. The dataset contains 296
incorrect student submissions and includes a reference solution
and test suites manually created by the course educator. We
select the EvoSuite [13] state-of-the-art Java unit test genera-
tion tool as the representative of test generation tools. EvoSuite
is designed to create tests that maximize code coverage and
contain assertions capturing the behavior of the software under
test. We compare their ability to detect bugs in student sub-
missions against educator-written tests. As for program repair,
we evaluate the extent to which existing tools can successfully
repair incorrect student submissions. We chose ARJA-e [14],
an advanced tool that employs a diverse set of repair operations
and can handle various faults, making it well-suited to address
diverse errors that may be present in student submissions.
Furthermore, given the recent advent of large language models
(LLMs) and their capability in code-related tasks, we also
include the open-source Qwen2.5 LLM 1 in our evaluation.
We run Qwen2.5 locally and deliberately avoid more advanced
but closed-source LLMs like GPT-42 to prevent data privacy
issues; closed-source models carry a risk of prompt leakage,
which could expose sensitive content, including assignment
details or student submissions [15, 16]. We use the LLM for
both test generation and program repair tasks and compare

1Qwen2.5-Coder-7B-Instruct: https://huggingface.co/collections/Qwen
2https://openai.com/index/gpt-4/

its performance to resp. EvoSuite and ARJA-e, exploring the
potential of LLMs in informing automated assessment for
programming projects.

Our evaluation results show that, compared to the educator
tests, the tests generated by both EvoSuite and Qwen2.5 are
less effective in detecting bugs in over 50% of the 296 incor-
rect submissions. The generated tests perform equivalent to or
outperform the educator tests in terms of bug detection only
in 2% of the cases. For program repair, ARJA-e and Qwen2.5
demonstrated similar results, with ARJA-e fully and partially
repairing 2.3% and 7.3% of the incorrect submissions, while
Qwen2.5 repaired 0.6% and 8.5%, respectively. The results
indicate that while current test generation and program repair
tools can inform assessments for introductory programming
assignments, they are not yet adequate for more complex
programming assignment projects.

To better understand the limitations of existing tools, we
further explore the reasons behind these results. The findings
highlight several factors, mostly related to the nature of
assignment projects, such as code across multiple files and the
presence of nuanced functionalities. Based on the insights, we
produce practical guidelines for educators regarding using test
generation and program repair tools to support assessment in
assignment projects.

The main contributions of this paper are as follows:
(1) We conduct a case study on 296 incorrect student-

submitted programming projects to investigate the fea-
sibility of automated assessment. The results show that
existing test generation and program repair tools are
insufficient for effectively handling assignment projects.

(2) We investigate the reasons behind the insufficiency of
these tools and discuss practical implications for their use.
These insights aim to enhance educators’ understanding
of test generation and program repair techniques in more
complex programming assignments and to provide guide-
lines for effectively utilizing them in assignment projects.

This paper is structured as follows. Section II presents
the background of this work, including test generation and
program repair, different categories of programming assign-
ments, and LLMs. Section III describes the selection of tools
and the methodologies used for test generation and program
repair. Section IV presents the experimental results. Section V
discusses the implications and findings we derived from our
study, Section VI presents related work, and Section VII
concludes the paper and outlines future work directions.

II. BACKGROUND

A. Test Generation

Manually writing test cases can be labor-intensive, which
has prompted the development of various automated test gen-
eration techniques with a focus on efficiency in producing tests
that achieve high code coverage and are effective at detecting
faults. In the Java domain, Randoop [17] is well-known as a
random unit test generation tool, and EvoSuite [13] is arguably
the state-of-the-art search-based unit test generation tool. Both

700

https://huggingface.co/collections/Qwen
https://openai.com/index/gpt-4/


tools generate executable tests in JUnit 3 format, and both are
capable of generating tests that achieve high coverage [18],
but empirical evidence suggests EvoSuite is superior in terms
of fault effectiveness [19]. In a nutshell, given a Java class
under test, EvoSuite starts by creating a population of test
suites, each containing a random number of randomly created
tests, evolves them using customary genetic operators and
code coverage as optimization goal (fitness function) until the
coverage criterion is met (e.g., full branch coverage) or the
given budget (usually time) is exhausted. The result is the test
suite with the highest code coverage, with each individual test
enhanced with assertions for fault detection.

Writing unit tests to evaluate the functionality of student
submissions is common practice among educators. However,
this approach often leads to inaccurate grading and difficulties
for students in mapping the failing tests to specific errors
in their code [4]. Compared to manually checking the func-
tionality solely by the program’s outcome, unit testing offers
more granularity of evaluation by assessing classes, methods,
and statements within the program [1]. With many automated
assessment tools leveraging testing for grading and providing
feedback, test generation can assist educators in producing
more granular and reliable assessments [20].

B. Program Repair

1) General Purpose Program Repair: General purpose pro-
gram repair (hereafter, gPR) techniques aim to automatically
fix bugs in real-world software. A variety of gPR approaches
have been proposed over the years, including search-based,
semantic-based, and deep learning-based techniques. As one
of the most prominent gPR approaches, search-based repair,
also known as generate-and-validate, takes a program and a
test suite with at least one failing test as input (i.e., a test
revealing that a given program does not implement a certain
expected behavior). The approach first generates repairs by
exploring a search space consisting of repair ingredients (i.e.,
code that can be used to generate repairs) and then validates
the repairs against the given test suite. A valid repair should
pass all the tests in the suite.

Most search-based repair approaches are redundancy-based,
meaning they assume repair ingredients that could fulfill the
tests already exist within the program under repair [21].
Existing prime examples of this type of approach include
GenProg [22], ARJA [23], and PAR [24], which all leverage
heuristic algorithms, such as genetic programming [25].

2) Educational Program Repair: gPR techniques typically
assume the programs under repair are mostly correct, which
limits their suitability for programming assignments for two
primary reasons. First, compared to gPR defect benchmarks
(e.g., Defects4J [26]) student submissions for programming
assignments are relatively small, providing limited repair
ingredients4. Second, student submissions often have high test

3https://junit.org/
4There is informal evidence from users of the Astor [27] program repair

library suggesting gPR tools may not directly apply to repairing programming
assignments: https://github.com/SpoonLabs/astor/issues/155.

failure rates, with multiple errors requiring complex repairs,
which poses significant challenges for gPR [9]. While larger
programming assignment projects may offer more repair ingre-
dients, their complexity, especially with faults across multiple
files, introduces further repair challenges.

To address these limitations, program repair approaches spe-
cially tailored to the programming assignment repair problem
have been proposed; we refer to them as educational program
repair (hereafter, ePR). Unlike gPR, ePR techniques tend to
avoid solely relying on incorrect programs and test suites;
instead, they assume the availability of (possibly multiple)
reference solutions (e.g., educator-developed solutions or fully
correct student solutions with respect to given tests) and lever-
age them to repair incorrect student submissions [8, 11, 28].
Existing ePR approaches primarily focus on introductory as-
signments, which are relatively simple in terms of both the
programs themselves and their accompanying tests [11, 9].

C. Programming Assignments

Programming assignments vary in difficulty and can be
categorized into three groups [10, 12, 29]5: (1) Introductory:
requiring students to use basic coding skills to complete a
very specific task in a single file (e.g., find the maximum
value in an array), (2) Intermediate: requiring students to use
further coding skills, such as data structures and algorithms
implemented across multiple methods (e.g., depth-first search
using recursion), and (3) Advanced: requiring students to
implement larger, more complex projects across multiple files
(e.g., building an interactive Tic-tac-toe game).

Most existing ePR techniques focus on repairing introduc-
tory programming assignments, usually involving developing
a single function. These programs are evaluated using simple
input-output tests to assess correctness (e.g., “in: [3, 4], out:
4”). Such assignments are found in the IITK dataset [9],
which is commonly used to evaluate ePR techniques, such
as Clara [8], Refactory [11], and Verifix[28].

Compared to introductory ones, intermediate assignments
involve problem-solving, algorithmic thinking, and optimiza-
tion techniques, allowing students to handle larger and more
complex code files [29]. Despite the increased complex-
ity, these assignments often maintain a single-file structure
with input-output testing, like the introductory ones. De-
fects4DS [29], a dataset comprising data structures and al-
gorithms assignments, belongs to the intermediate level.

Advanced assignments often require developing a software
project with multiple classes and methods, and tackling a set
of problems, each exercising some functionality within the
program. Taking the Tic-tac-toe game as an example, it may
include tasks such as implementing the game mechanism,
managing player interactions, and determining the winner.

Unlike simpler assignments, these projects use dedicated
unit tests for assessing the program’s correctness [10], com-
monly developed by comprehensive testing frameworks (e.g.,

5These groups are alternatively termed as “skills”, “labs”, and “projects”
by de Freitas et al. [10].

701

https://junit.org/
https://github.com/SpoonLabs/astor/issues/155


JUnit for Java6, unittest for Python7). Unit testing treats
the program as a white box, interacting with and evaluating
various program methods, asserting their expected behaviors.

D. Large Language Models

Large Language Models (LLMs) refer to a category of
advanced, large-scale models pre-trained on extensive datasets
and capable of generating human-like responses by predicting
the next token given some text prefix. This training approach
leverages the vast quantities of text available on the web,
equipping LLMs with strong capabilities in natural language
tasks such as conversation and reasoning [30]. Code language
models (CLMs) or large language models trained on code
(LLMCs), such as Codex from OpenAI8, are a specialized sub-
set of LLMs designed specifically for code-related tasks, such
as code summarization, generation, and program repair [31].

Despite their promising performance across various tasks,
LLMs are prone to two major problems: non-determinism
and hallucinations [32, 33]. Non-determinism refers to the
inconsistency in output when identical prompts yield different
responses across multiple requests. Inconsistent responses,
like generated code, can undermine reliability during the
software development process [32]. Meanwhile, hallucinations
describe LLMs’ tendency to produce outputs that deviate
from user intent, contain internal inconsistencies, or misalign
with factual knowledge. This makes the LLMs’ deployment
potentially risky in many domains [33], including education
where accuracy in grading and feedback is paramount.

III. METHODOLOGY

To explore the potential of automated test generation and
program repair in the automated assessment of programming
assignment projects, we conduct an empirical case study
using a real-world project following the software engineering
case study guideline [34]. Specifically, we aim to answer the
following research questions:
RQ1 To what extent can existing test generation techniques

inform automated assessment by detecting more buggy
behaviors in programming assignment projects?

RQ2 To what extent can existing program repair techniques
inform automated assessment by repairing more buggy
behaviors in programming assignment projects?

A. Dataset

Our dataset is based on a programming assignment project
from a Java Programming class for computer science under-
graduate students; it includes a reference solution and a test
suite both written by the educator as well as 299 student
submissions, only three of which are fully correct.

The assignment tasked students to implement a coffee maker
system, requiring features such as printing to console, con-
ditionals, loops, arrays, inheritance, and exception handling.
Students are provided with skeleton code containing fixed class

6https://junit.org/
7https://docs.python.org/3/library/unittest.html
8https://openai.com/index/openai-codex/

names and fixed method names and signatures. While they
are free to implement additional private methods, students are
asked not to change the signatures of public ones.

The reference solution consists of 13 classes and 32 meth-
ods, 11 of which are considered “focal” methods, i.e., methods
that students must implement in their submissions9.

The educator-written test suite consists of 7 test classes with
a total of 60 unit tests. Although not necessarily designed
to achieve 100% code coverage, we assume this test suite
adequately validates the expected behavior of the program
since it is carefully designed as the minimal requirement for
achieving a perfect grade (e.g., 100 out of 100). However, the
reference test suite may not sufficiently cover all test scenarios
and corner cases within the student submissions; therein lies
the opportunity to complement this educator-written test suite
with automatically generated tests.

B. Test Generation Tools

To investigate whether automated unit test generation can
inform a more fine-grained assessment of the functionality
implemented in programming assignments, we aim to select
a representative traditional test generation tool for Java and
a suitable LLM. As the representative for traditional test
generation tools for Java, between Randoop and EvoSuite we
choose EvoSuite due to its higher effectiveness in detecting
real faults [35, 19], which can potentially contribute to more
precise grading of programming assignment projects, and the
more manageable nature of the unit tests it produces (mini-
mized for coverage and usually shorter and more readable).

To identify an LLM suitable for test generation for program-
ming assignment projects, we consider both the complexity of
instructions involved, as described in §III-C, and the ethical
concerns of model selection. Closed-source LLMs, like GPT-
4, pose risks related to potential misuse, including the pos-
sibility of training on user prompts and inadvertently leaking
assignment content or solutions, where such risks could lead
to student plagiarism [16, 15]. To mitigate these risks, we
focus on selecting an open-source model with a relatively
small size (i.e. number of parameters) that is feasible to run a
consumer-grade personal computer. Based on benchmarks of
the code generation capabilities under complex instructions,
CodeQwen emerged as a strong candidate among models with
approximately 7B parameters [36]. Considering the LLM’s
rapid advancement, we choose an up-to-date version, namely
Qwen2.5-Coder-7B-Instruct (Qwen2.5 for short) 10.

C. Test Generation Methodology

The goal of using test generation is to create test suites
that effectively detect bugs in student submissions, thereby
providing detailed test results for automated assessment [6].
To achieve this, we run the two aforementioned test generation
approaches (EvoSuite and LLM) using the educator’s reference
solution as input. The set of tests obtained as output (i.e.,

9In the software testing literature, the term focal method is often used to
identify the target method of a unit test; we overload this term in this paper.

10https://huggingface.co/Qwen/Qwen2.5-Coder-7B-Instruct

702

https://junit.org/
https://docs.python.org/3/library/unittest.html
https://openai.com/index/openai-codex/


capturing the expected behavior) is then run against the
students’ submissions.

To evaluate whether test generation techniques can improve
automated assessment for programming assignment projects,
we examine if the tests generated by these techniques can
match or even exceed the educator-written test suite (hereafter,
educator tests) in identifying bugs within student submis-
sions. Specifically, we categorize each of the incorrect student
submissions into five cases: (1) Non-detection: the generated
tests fail to detect any of the buggy methods in a given
incorrect student submission that the educator tests do identify;
(2) Insufficient: the generated tests detect a non-empty subset
of the buggy methods that the educator tests identify; (3) Com-
plementary: generated and educator tests detect unique buggy
methods missed by the other; (4) Equivalent: generated and
educator tests detect the same buggy methods; (5) Outperform:
the generated tests detect a superset of the buggy methods the
educator tests identify.

When evaluating the bug detection ability of the generated
tests, we focus on the 11 focal methods directly related to
the tasks being assessed, i.e., those which contribute to stu-
dents’ grades. We isolate these methods from others, including
skeleton code or any custom methods students create. We
specifically consider the bug detection ability of generated
tests in detecting bugs within the set of focal methods. Given
the project’s complex nature, isolating the focal methods mini-
mizes cross-method interactions, easing the accurate detection
of buggy methods.

For test generation using EvoSuite, we applied the de-
fault settings to generate tests for all the methods within
the assignment project. Due to the inherent randomness in
EvoSuite’s evolutionary algorithms [13], we ran ten repetitions
and averaged the results to better reflect its performance.

For Qwen2.5, we follow the unit test generation strategy
proposed by Schäfer et al. [37], where the prompts contain
(1) method signatures, (2) method documentation, (3) method
usage examples, and (4) method source code. We present
each class individually to the LLM, containing methods with
their signatures, and request that it generate a test suite.
Each method that comes with the skeleton code includes
educator-written JavaDoc to clarify its intended behavior. As
additional context, we provide the source code of another class
that frequently interacts with the class under test (e.g., via
object instantiation and method calls) as a usage example.
For classes with focal methods, we explicitly ask the LLM to
focus on achieving high coverage on them. Figure 1 illustrates
the complete prompt template. We use the default settings
of Qwen2.5. If LLM-generated tests fail to compile due to
missing library imports, we manually add them; otherwise,
those tests are commented out (discarded) [37]. We also ensure
the reference solution passes all the LLM-generated tests.

For our test generation using EvoSuite and LLM, as well as
program repair with LLM (§III-E), we conducted experiments
on a MacBook Pro with Apple M3 Pro Chip, 36 GB memory,
and macOS Sequoia 15.0.1.

Fig. 1: Test generation prompt for LLM

D. Program Repair Tools

Existing ePR tools, such as Clara [8], Refactory [11], and
Verifix[28], do not apply to programming assignment projects,
as discussed in §II-B2, and thus, we exclude them from
our study. Instead, we exhaustively consider the gPR tools
in the community-driven catalog at https://program-repair.org.
However, gPR tools need to be adapted to fit the context
of programming assignments. Inspired by ePR tools, we aim
to equip a gPR tool with the ability to leverage a reference
solution. As discussed in §II-B, redundancy-based repair tech-
niques are a primary category of search-based repair tools,
which can repair an incorrect program by rearranging and
transforming its existing code [21]. In this context, compo-
nents from a reference solution can be utilized as promising
repair ingredients if they are present in the incorrect program
(see §III-E for more details). Accordingly, we focused on
redundancy-based repair tools during the tool selection.

We applied the following inclusion criteria: (1) applicable
to Java programs, (2) publicly available, (3) not restricted to
specific fault types (e.g., concurrency), (4) not restricted to
specific repair scopes/operators (e.g., conditional statements),
(5) not exclusive for benchmarks (e.g., Defects4J), (6) use
a redundancy-based approach, (7) executable without compi-
lation errors (or errors solvable with reasonable efforts). By
adhering to these criteria, we ensure that the candidate tools
were broadly applicable for repairing programming assign-
ment projects. The shortlisted tools are ARJA [23], ARJA-
e [14], jGenProg [27], Cardumen [38], and kGenProg [39]11.

To validate our choices, we conducted a preliminary eval-
uation of the shortlisted tools using IntroClassJava [40], a
benchmark consisting of 297 student-written Java programs
from an introductory programming course [41]. Previous
studies indicate that ARJA outperforms both jGenProg and
Cardumen in terms of the number of repaired programs [42].
Building on top of this, we evaluated ARJA-e and kGenProg
on IntroClassJava, finding that ARJA-e surpassed the others
in terms of the number of repaired programs. In addition,
ARJA-e contains a rich collection of repair templates, such as

11Detailed inclusion process available at https://github.com/ruizhengu/
ICST-2025-Assignment-Projects.

703

https://program-repair.org
https://github.com/ruizhengu/ICST-2025-Assignment-Projects
https://github.com/ruizhengu/ICST-2025-Assignment-Projects


adjusting method parameters, which is particularly useful for
projects with frequent method calls. Given the time-consuming
nature of running traditional program repair tools against all
submissions from a programming assignment (experimental
setup and runtime are detailed in §III-E), we chose ARJA-e
as the representative tool.

Given the capabilities of LLMs across various code-related
tasks, including program repair [31], we continue using
Qwen2.5 as the LLM-based tool for the evaluation.

E. Program Repair Methodology

The objective of using program repair in our context is to
modify incorrect student submissions so they pass all tests.
We aim to mitigate some of the limitations of gPR and ePR
(cf. §II-B) while accommodating the unique characteristics of
programming assignment projects described in §II-B2.

We introduce valid repair ingredients from a reference
solution into incorrect student submissions (cf. §III-D) and em-
ploy a method-level incremental repair strategy. This approach
allows the repair of one buggy method at a time, minimizing
the number of failed tests and the need for complex, multi-file
repairs. The process takes an incorrect student submission and
a reference solution as input and attempts to repair each buggy
method so that it passes its associated tests.

1) Reference Solutions: Previous work highlights a trade-
off in program repair between expanding the search space
with likely valid repair ingredients and the ability to produce
accurate repairs [43]. Aiming for balance, we selectively
incorporate only key components (i.e., correct implementations
of specific buggy methods) from a reference solution rather
than the entire solution. This approach helps limit redundant
additions to the search space, optimizing repair efficiency.

2) Incremental Repair: Student submissions can be sub-
stantially incorrect, particularly in programming assignment
projects where incorrect assumptions and subsequent program-
ming mistakes may affect multiple classes and methods. In
such cases, program repair techniques may struggle to generate
complex fixes involving multiple code chunks and failing
tests [9]. To alleviate this, we employ a method-level incre-
mental repair strategy to repair one buggy method at a time.
This helps simplify the repair process by breaking it down into
smaller, manageable tasks. By confining repair generation to
individual buggy methods, we reduce the number of failed
tests and the search space size for potential repairs [43].

In the incremental repair process, we first identify a set
of buggy methods from an incorrect submission based on
the provided tests and the focal methods. We then isolate
one buggy method as the method under repair and create an
intermediate submission (hereafter referred to as intermediate)
as the target for repair generation. To create an intermediate,
we replace all buggy methods except the method under repair
with their correct implementations from a reference solution.
We also add the correct implementation of the method under
repair to the intermediate. This approach limits the repair
scope within the method under repair and introduces repair
ingredients specifically targeting that method. By identifying

all the buggy focal methods from 296 incorrect submissions,
we derive a total of 2126 intermediates.

3) Experiment Setup and Procedure: We first run ARJA-e
off-the-shelf (without reference solution or incremental repair)
on 296 incorrect student submissions, followed by execution
with the educator solution as reference and apply incremental
repair against 2126 intermediates. To manage this resource-
intensive task, we use a high-performance computing machine
equipped with 2x32-core Intel Xeon Platinum 8358 CPUs and
256 GB of RAM, assigning about 70 intermediates to each
of its 30 nodes. With a 10-minute time budget per ARJA-e
execution, the total task duration is approximately 30 hours.

As programming assignments grow in size and complex-
ity, the educator solution is not necessarily the only correct
implementation, i.e., multiple valid solutions may exist. Fur-
thermore, different correct student solutions can offer unique
patterns that serve as valuable repair ingredients [23]. As de-
veloping reference solutions is time-consuming for educators,
we also explore using correct student solutions as references.

To investigate how variations in reference solutions af-
fect program repair effectiveness, we additionally consider
three correct student solutions (CS1-3) as references, hence
repeating the experiment three times. We assess the repair
effectiveness of the traditional repair tool across three metrics:
the number of fully repaired submissions (where all buggy
methods are fixed), partially repaired submissions (at least
one buggy method is repaired), and the total number of
buggy methods repaired, using the educator solutions and three
correct student solutions as references. To ensure valid out-
comes, we excluded repairs generated by ARJA-e containing
System.exit(0); to prevent early program termination.

Given that longer instructions tend to generate more buggy
code by LLMs [32], we adopt a similar approach to augment-
ing LLM-based repair with reference solution and incremental
repair used for ARJA-e. To avoid overwhelming the LLM
with extensive prompts containing entire student programs
across multiple code files, we only provide relevant context.
For each intermediate, we provide the LLM with the class
containing the buggy method and ask it to repair it. We
combine the prompting strategies from Silva and Monperrus
[44] and Zhao et al. [29], structuring the prompt with the
following components: (1) task description, introducing the
program repair task, (2) problem description, including the
class with the buggy method, its dependencies with other class
methods or variables, and educator-written JavaDocs capturing
each method’s intended functionality, (3) failing tests, a list of
the tests the buggy method fails to pass, (4) failing tests’ error
message, detailed runtime error information to help identify
faults, (5) reference code, the correct implementation of the
buggy method from the reference solution, and (6) final task
description, instructions to avoid directly using the reference
code and return the corrected method. With both the reference
solution and tests sourced from educators, this structured
prompt ensures that the LLM has sufficient contextual in-
formation while discouraging direct copying of the reference
solution. Figure 2 illustrates the complete prompt template.

704



Fig. 2: Program repair prompt for LLM

There are often multiple ways to implement the required
functionalities, and similarly, various approaches can be taken
to repair incorrect submissions. To encourage the LLM to
generate creative and varied repairs that can better address
the diversity in student submissions, we allow for non-
deterministic outputs by setting Qwen2.5’s temperature to
0.8. The temperature between 0 and 2 controls the output’s
randomness, where higher values make the results more varied,
while lower values lead to more focused outputs [32].

To evaluate the effectiveness and consistency of Qwen2.5
for repair, we compute the Pass@k metrics, commonly used to
evaluate LLM code generation [45, 12] For each intermediate,
we generate n = 5 repair attempts. For a given k (1 ≤ k ≤ n),
we assess all combinations of k repairs from the n attempts,
counting those with at least one successful repair (i.e., one that
passes all tests). For instance, in Pass@1, if the first repair
attempt is successful, it contributes to the total Pass@1 result.

We compute Pass@1, Pass@3, and Pass@5 metrics for
LLM-generated repairs, covering: (1) fully repaired submis-
sions: the number of incorrect submissions where all buggy
methods are fixed in at least one combination of 5 repair
attempts, (2) partially repaired submissions: the number of
submissions with at least one buggy method fixed in at least
one combination of 5 repair attempts, and (3) buggy meth-
ods repaired: the total number of individual buggy methods
repaired in at least one combination of 5 attempts.

To further validate LLM-generated repairs, we manually
examine whether the LLM genuinely repaired the incorrect
submissions or simply copied the reference solution provided
in the prompt. Cases where the generated repair is identical
to the reference solution are excluded from the results.

TABLE I: Coverage from educator and generated tests

Coverage Metric Educator EvoSuite LLM

Instruction 73% 94% 70%
Branch 79% 91% 63%

Fig. 3: Test effectiveness compared to educator tests

IV. RESULTS

In this section, we present the results of our study and
answer our research questions.

A. RQ1: Test Generation

Table I shows results for instruction and branch coverage.
On average, EvoSuite generated 99 tests per run, compared
to 60 educator-written tests (Edu for short) and 44 LLM-
generated tests. EvoSuite achieved the highest instruction and
branch coverage, followed by Edu , while the LLM exhibited
the lowest coverage in both areas.

Figure 3 shows the bug detection results for EvoSuite and
the LLM against Edu . Notably, the LLM failed to detect bugs
in 12 out of 296 incorrect submissions. Overall, both EvoSuite
and the LLM underperformed compared to Edu , with only
∼2% cases being equivalent or better. Although many cases
fell under the complementary category, Edu still demonstrated
superior performance regarding the number of buggy methods
detected. Specifically, EvoSuite was insufficient in 150 sub-
missions on average (with a Standard Deviation of 24 and a
Relative Standard Deviation of 16%) and complementary to
Edu in 137 submissions (SD=24 and RSD=18%).

These findings indicate that the generated tests are generally
insufficient in detecting bugs in student submissions compared
to educator tests. Even in complementary cases, educator
tests consistently detect significantly more bugs, demonstrating
the limited effectiveness of test generation for evaluating
programming assignment projects.

Answer to RQ1: Generated tests are insufficient in detect-
ing bugs in over 50% of cases compared to educator-written
tests, and only ∼2% of cases show them as equivalent
or superior. In complementary cases, educator tests detect
about 4 times more buggy methods than generated tests.

B. RQ2: Program Repair

When executing off-the-shelf ARJA-e, it only repairs 2
out of 296 incorrect student submissions. However, with the

705



TABLE II: Traditional program repair results with different reference solu-
tions

Ref SFR (out of 296) SPR (out of 296) MR (out of 2126)

ES 7 (2.4%) 19 (6.4%) 32 (1.5%)
CS1 8 (2.7%) 19 (6.4%) 31 (1.5%)
CS2 6 (2.0%) 18 (6.1%) 28 (1.3%)
CS3 6 (2.0%) 18 (6.1%) 25 (1.2%)

AVG 6.8 (2.3%) 18.5 (6.3%) 29 (1.4%)

TABLE III: LLM-generated repair results

Metrics SFR (out of 296) SPR (out of 296) MR (out of 2126)

Pass@1 2 (0.6%) 25 (8.4%) 73 (3.4%)
Pass@3 2 (0.6%) 25 (8.4%) 82 (3.9%)
Pass@5 2 (0.6%) 26 (8.8%) 86 (4.0%)

AVG 2 (0.6%) 25.3 (8.5%) 80.3 (3.8%)

educator solution as a reference and applying incremental re-
pair, ARJA-e fully repaired 7 submissions. Using three correct
student solutions as references shows consistent performance.

Table II summarizes the results, where SFR, SPR, and MR
denotes the number of fully repaired submissions (i.e., all
buggy focal methods in the incorrect submission are repaired),
partially repaired submissions (i.e., at least one buggy focal
method in the incorrect submission is repaired), and the num-
ber of repaired methods among 2126 buggy focal methods,
respectively. All four reference solutions yielded comparable
results, where they contribute approximately 2.3% SFR and
around 6.2% SPR out of 296 incorrect submissions, and about
1.4% MR for 2126 buggy focal methods.

Table III presents the results of LLM-generated repairs,
excluding 76 repair results identical to the reference solution
(e.g., minor changes in variable names) as discussed at the end
of §III-E. Pass@1, Pass@3, and Pass@5 metrics are computed
based on five repetitions of the LLM repair generation process.
Qwen2.5 demonstrated similar results to ARJA-e in terms of
SPR (partial repair), where it achieved 8.5 on average% and
ARJA-e at about 6.3% However, Qwen2.5 achieved a lower
SFR (full repair), reaching only 0.6%, compared to ARJA-
e’s 2.3%. Notably, Qwen2.5 outperforms ARJA in MR, with
approximately 3.8% compared to ARJA-e’s 1.4%. The results
suggest that while the LLM shows better results in repairing
individual buggy methods, it may struggle with fully repairing
student submissions.

For both traditional and LLM-based program repair, the
overall number of successful repairs remains low, indicating
that current program repair techniques are overall inadequate
for assessing programming assignment projects.

Answer to RQ2: Traditional and LLM-based repair fully
repaired about 2.3% and 0.6% of the 296 incorrect stu-
dent submissions and partially repaired around 6.3% and
8.5%, respectively. For 2126 buggy methods, the traditional
approach repairs approximately 1.4%, whereas the LLM
achieves a higher repair rate of 3.8%.

1 public void test09() {
2 Recipe recipe0 = new Recipe("", 0);
3 Recipe recipe1 = new Recipe("", 0);
4 assertEquals(recipe0, recipe1);}

(a) EvoSuite-generated test

1 public void testRecipeDifferentIngredients() {
2 Recipe recipe0 = new Recipe("", 0);
3 recipe0.addIngredient(new Coffee());
4 Recipe recipe1 = new Recipe("", 0);
5 recipe1.addIngredient(new Milk());
6 assertEquals(recipe0, recipe1);}

(b) Educator test

Fig. 4: A case where EvoSuite is insufficient compared to the educator test

C. Threats to Validity

The process of selecting, building, and executing the pro-
gram repair tools was mostly manual, which introduces a
potential threat to internal validity due to human errors. To
mitigate this threat, we follow a systematic approach to avoid
biases during the selection process (§III-D). Future work
should explore a broader range of program repair tools to
improve the generalizability of our findings, especially as
LLM-based repair is evolving rapidly.

ARJA-e has a technical limitation in that it cannot identify
faults in constructors. This limitation poses an internal threat to
validity as student submissions may have faults in constructors
that ARJA-e cannot resolve. Although this limitation may
impact the results of repair generation in our experiments, it
falls out of the scope of our research. To maintain fairness in
comparing ARJA-e with LLM, we did not instruct the LLM
to specifically consider faults in constructors.

The manual validation of LLM-generated repairs discussed
in §III-E has limitations. The student submissions that closely
resemble the reference solution may naturally result in repairs
identical to the reference solution, which can be difficult
to differentiate from genuine repairs. This remains an open
challenge and we leave for future work to explore system-
atic validation methods to better distinguish between genuine
repairs and reference-based solutions.

V. FINDINGS AND DISCUSSIONS

In this section, we discuss the findings and implications
derived from our experimental results to provide guidelines
for improving existing test generation and program repair
techniques for assessing programming assignment projects.

A. Test Generation

We first investigate why EvoSuite achieves higher code cov-
erage than educator tests yet remains less effective in detecting
student bugs. EvoSuite’s limited effectiveness likely stems
from lacking contextual knowledge about the assignments that
the educator possesses when crafting tests. This knowledge
allows educators to anticipate common student mistakes and
incorporate them into the tests.

Figure 4 shows an example of such a case. Both EvoSuite
and educator tests target the Recipe.equal method, which
compares two Recipe objects based on default properties

706



(a) Number of buggy methods

(b) Number of failed tests

Fig. 5: Comparison of repaired and unrepaired submissions

(name and size) and contained Ingredient objects. The
EvoSuite test (Figure 4a) does not add any ingredients to
the recipes, whereas the educator test does account for this
by adding ingredients to the recipes to aid determining their
equality (highlighted lines in Figure 4b). This exemplifies the
complex nature of programming assignment projects, where
dependencies exist within programs, compared to introduc-
tory and intermediate assignments. With assignment-specific
insights, educators can design tests that cover these interde-
pendencies, thus detecting student mistakes more effectively.

These findings suggest that current test generation tech-
niques are not yet able to replace educator-written tests.
However, research shows potential in using these tools to
augment existing tests, rather than generating new ones from
scratch [46]. To explore this in an educational setting, we
augmented the educator tests with Qwen2.5.

By using the LLM to augment the existing educator tests, we
expanded the test suite from 60 to 100 cases. The augmented
tests slightly increased the coverage: instruction coverage rose
from 73% to 74%, and branch coverage from 79% to 80%.
More importantly, the LLM-augmented tests demonstrated a
notable improvement in bug detection. Compared to the tests
generated by EvoSuite or LLM (Figure 3), the augmented tests
performed equivalently to the educator tests on 131 out of 296
incorrect student submissions and outperformed them on 29
submissions. These findings suggest that augmenting educa-
tor tests can enhance bug detection, supporting finer-grained
assessments. However, this remains a preliminary exploration,
underscoring the need for more systematic methodologies and
rigorous evaluation to fully realize its potential.

B. Program Repair

To investigate the likely reasons behind the low repair rate,
we first analyze the number of buggy methods and failed

tests among the repaired and unrepaired student submissions
from ARJA-e. Figure 5a shows no significant difference in
the number of buggy methods between these two categories,
with submissions from both repaired and unrepaired groups
having between 1 and 11 buggy methods. However, as shown
in Figure 5b, with 60 tests in total, the repaired submissions
had significantly fewer failed tests, ranging from 1 to 18 (6
on average). The unrepaired group has failing tests ranging
from 4 to 49 (15 on average), which is approximately 2.5x
higher than the repaired ones. These findings align with prior
research [9], suggesting that a high test failure rate stems from
the significant incorrectness in student submissions, which is
a primary reason for no repair generation. This highlights
the need for new techniques that can effectively handle the
complexity of repairing programming assignment projects.

To further draw insights from the unrepaired buggy meth-
ods, we manually investigated them. Due to the high number of
such buggy methods, we randomly selected ten buggy methods
having less than 8.25 failed tests, which is the third quartile
of the number of failed tests from the repaired submissions.

One major cause of no repair generation is limited program
context, as program repair techniques may fail to generate
repairs due to insufficient analysis of the program context
(e.g., the surrounding code), a common challenge faced by
program repair tools [14, 47]. Although ARJA-e mitigates
this to some extent by considering broader program context
beyond just variables within the buggy methods [14], we
observed that it still struggles when repairing buggy meth-
ods involving expressions related to field variables updated
elsewhere in the program. This also helps explain why LLM
repaired more buggy methods and achieved more partially
repaired submissions than ARJA-e, yet produced fewer fully
repaired submissions. Despite isolating the buggy methods by
creating intermediate programs, ARJA-e still received an entire
program as input. In contrast, while the prompts for LLM
included relevant information, they only covered one or a few
classes, offering less program context than ARJA-e. This limi-
tation of LLM-based approaches is particularly relevant to the
nature of programming assignment projects, which typically
involve multiple code files and significantly longer contextual
information compared to simpler introductory assignments.

To ensure reliable results from LLM, only a portion of the
program and related information could be used as input. This
hinders the LLM’s ability to generate fully repaired submis-
sions across the entire program, despite its effectiveness in
repairing single methods. Although JavaDocs of the methods
were provided in the prompts to clarify functionalities, other
contexts, such as the assignment’s brief or additional program
structure, could serve as useful supplementary information.
Future work should explore these possibilities.

C. Implications for educators

Based on the experiments and findings derived from this
study, we offer several implications for educators regarding
the use of test generation and program repair tools to support
assessment in programming assignment projects.

707



It remains necessary for educators to write tests that suf-
ficiently cover the intended scenarios of the assignments,
as the current test generation techniques are not advanced
enough to fully account for the complex dependencies and
scenarios present in assignment projects. These tools often
miss important cases that educators can better anticipate due
to their deep understanding of the assignments’ goals.

While emerging techniques like LLMs show potential to
augment existing tests and enhance bug detection, research
into the systematic evaluation of this approach is needed. Our
preliminary findings suggest that LLM-augmented tests can
improve bug detection to an extent and educators could explore
this as a viable way to enhance their tests.

Educators can also leverage correct student solutions to
drive program repair tools for repairing other incorrect student
submissions. This approach reduces the need for manually
developing reference solutions without significantly impacting
the effectiveness of program repair tools.

While program repair tools can address bugs within method
bodies at the statement level, they often struggle with repairs
requiring changes to class members, such as method signa-
tures, annotations, and constructors. To mitigate this issue,
educators typically provide skeleton code with predefined
class members when releasing assignments. However, there
is a trade-off between the applicability of program repair
techniques and students’ learning experience, as providing too
much supporting information may hinder students’ learning
and creativity. Therefore, it is recommended that educators
carefully design assignments to balance adequate support
for program repair techniques with encouraging students to
develop problem-solving skills independently.

VI. RELATED WORK

Paiva et al. [1] conducted a systematic review on automated
assessment in programming education, analyzing 778 primary
studies on topics including testing techniques and feedback
types for automated assessment. The study identified output
comparison and unit testing as the primary methods to assess
student programs’ functionality, highlighting that testing tech-
niques are essential for automated assessment. It also discussed
program repair as a promising method for generating feedback
that suggests corrections for students’ code.

Tang et al. [6] proposed FEAT (Feedback and Evaluation
via Auto-generated Tests), a toolchain that generates high-
quality tests for automated assessment systems. By inputting
the problem specification, the tool combines exhaustive and
random testing approaches to create tests that detect every
erroneous solution identified by a larger test set. The generated
tests achieved higher coverage and identified 1.3-64.6% more
incorrect solutions than expert-created tests for eight program-
ming problems from online courses. While the source of the
evaluated program was not specified, an informal online search
suggests the problems are likely at the introductory level12.

12https://linzifan.github.io/python courses/PoC-Project4

Yi et al. [9] investigated the feasibility of using existing pro-
gram repair tools for introductory programming assignments.
They evaluated four program repair tools on the IITK dataset
and successfully repaired 208 out of 661 C programs. The
study identified two key reasons for the relatively low repair
rate: high test failure rate, where 60% of the programs failed
more than half of the tests, and complex repair, in which most
successful repairs only involved one-line changes.

Zhao et al. [29] introduced PaR, an LLM-powered frame-
work for repairing programming assignments that involve
complex data structures and algorithms. They also created
Defects4DS, a dataset of 682 incorrect solutions for such
assignments. While the solutions are still single-file programs,
they pose unique repair challenges due to larger codebases
and complex syntax compared to introductory ones. PaR
utilizes prompts that include relevant peer solutions, program
descriptions, input/output formats, and the buggy code. Results
show that PaR outperforms LLM baselines (e.g., GPT-3.5) and
traditional program repair tools (e.g., Verifix [28]) on both the
Defects4DS and IITK [9] datasets, indicating its effectiveness
in repairing both introductory and intermediate assignments.

VII. CONCLUSIONS AND FUTURE WORK

This paper evaluates the feasibility of applying existing
test generation and program repair approaches for the auto-
mated assessment of programming assignment projects. We
employed EvoSuite and the Qwen2.5 LLM for test generation,
and ARJA-e and the same LLM for program repair. Our
evaluation reveals noticeable limitations for both bug detection
and the repair of incorrect student solutions in complex
programming projects.

We discuss common challenges in generating tests and
repairing programming assignment projects, suggesting poten-
tial improvements. Our findings highlight the need for more
advanced test generation and program repair techniques, or
alternative methods to better inform automated assessments ac-
counting for the complex nature of programming projects. We
identified several future research directions. First, automated
augmentation of educator tests to improve bug detection,
leading to more accurate assessments and fine-grained grading.
Second, exploring supplementary information to guide LLMs
to effectively repair student solutions that spread multiple
files and interdependencies. This could involve extracting
minimal, useful information from assignment requirements or
runtime data for more comprehensive repairs. Third, in line
with previous efforts [48, 49], further explore integrating test
generation into program repair, as robust tests are essential for
effective bug detection and enhancing the quality and diversity
of generated tests would better support repair techniques to
improve overall performance. Exploring these directions could
advance both test generation and program repair, making
automated assessment systems applicable to more complex
programming assignments beyond the introductory level.

708

https://linzifan.github.io/python_courses/PoC-Project4


REFERENCES

[1] J. C. Paiva, J. P. Leal, and A. Figueira, “Automated
assessment in computer science education: A state-of-
the-art review,” ACM Trans. Comput. Educ., vol. 22,
no. 3, jun 2022.

[2] B. Clegg, M.-C. Villa-Uriol, P. McMinn, and G. Fraser,
“Gradeer: An open-source modular hybrid grader,” 2021.
[Online]. Available: https://arxiv.org/abs/2102.09400

[3] X. Liu, S. Wang, P. Wang, and D. Wu, “Automatic grad-
ing of programming assignments: An approach based
on formal semantics,” in IEEE/ACM 41st Intl. Conf. on
Software Engineering: Software Engineering Education
and Training (ICSE-SEET), 2019, pp. 126–137.

[4] R. Singh, S. Gulwani, and A. Solar-Lezama, “Automated
feedback generation for introductory programming as-
signments,” SIGPLAN Not., vol. 48, no. 6, p. 15–26,
2013.

[5] S. Sarsa, P. Denny, A. Hellas, and J. Leinonen, “Au-
tomatic generation of programming exercises and code
explanations using large language models,” in ACM Conf.
on Intl. Computing Education Research - Volume 1
(ICER). ACM, 2022, p. 27–43.

[6] T. Tang, R. Smith, S. Rixner, and J. Warren, “Data-
driven test case generation for automated programming
assessment,” in Conf. on Innovation and Technology in
Computer Science Education (ITiCSE). ACM, 2016, p.
260–265.

[7] X. B. D. Le, D. Lo, and C. Le Goues, “History driven
program repair,” in 2016 IEEE 23rd Intl. Conf. on Soft-
ware Analysis, Evolution, and Reengineering (SANER),
vol. 1, 2016, pp. 213–224.

[8] S. Gulwani, I. Radiček, and F. Zuleger, “Automated clus-
tering and program repair for introductory programming
assignments,” in ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation (PLDI).
ACM, 2018, p. 465–480.

[9] J. Yi, U. Z. Ahmed, A. Karkare, S. H. Tan, and A. Roy-
choudhury, “A feasibility study of using automated pro-
gram repair for introductory programming assignments,”
in 11th Joint Meeting on Foundations of Software Engi-
neering (ESEC/FSE). ACM, 2017, p. 740–751.

[10] A. de Freitas, J. Coffman, M. de Freitas, J. Wilson, and
T. Weingart, “Falconcode: A multiyear dataset of python
code samples from an introductory computer science
course,” in ACM Technical Symposium on Computer
Science Education (SIGCSE). ACM, 2023, p. 938–944.

[11] Y. Hu, U. Z. Ahmed, S. Mechtaev, B. Leong, and A. Roy-
choudhury, “Re-factoring based program repair applied
to programming assignments,” in 2019 34th IEEE/ACM
Intl. Conf. on Automated Software Engineering (ASE).
IEEE Computer Society, nov 2019, pp. 388–398.

[12] C. Koutcheme, N. Dainese, S. Sarsa, J. Leinonen,
A. Hellas, and P. Denny, “Benchmarking educational
program repair,” 2024. [Online]. Available: https:
//arxiv.org/abs/2405.05347

[13] G. Fraser and A. Arcuri, “Evosuite: automatic test suite
generation for object-oriented software,” in 19th ACM
SIGSOFT Symposium and the 13th European Conf.
on Foundations of Software Engineering (ESEC/FSE).
ACM, 2011, p. 416–419.

[14] Y. Yuan and W. Banzhaf, “Toward better evolutionary
program repair: An integrated approach,” ACM Trans.
Softw. Eng. Methodol., vol. 29, no. 1, jan 2020.

[15] S. Kim, S. Yun, H. Lee, M. Gubri, S. Yoon, and S. J.
Oh, “Propile: Probing privacy leakage in large language
models,” in Advances in Neural Information Processing
Systems, vol. 36. Curran Associates, Inc., 2023, pp.
20 750–20 762.

[16] X. Wu, R. Duan, and J. Ni, “Unveiling security, privacy,
and ethical concerns of chatgpt,” Journal of Information
and Intelligence, vol. 2, no. 2, pp. 102–115, 2024.

[17] C. Pacheco and M. D. Ernst, “Randoop: feedback-
directed random testing for java,” in Companion to the
22nd ACM SIGPLAN Conf. on Object-Oriented Pro-
gramming Systems and Applications (OOPSLA). ACM,
2007, p. 815–816.

[18] S. Shamshiri, J. M. Rojas, L. Gazzola, G. Fraser,
P. McMinn, L. Mariani, and A. Arcuri, “Random or
evolutionary search for object-oriented test suite genera-
tion?” STVR, vol. 28, no. 4, p. e1660, 2018.

[19] S. Shamshiri, R. Just, J. M. Rojas, G. Fraser, P. McMinn,
and A. Arcuri, “Do automatically generated unit tests
find real faults? an empirical study of effectiveness and
challenges,” in 30th IEEE/ACM Intl. Conf. on Automated
Software Engineering (ASE), 2015, pp. 201–211.

[20] S. Nayak, R. Agarwal, and S. K. Khatri, “Automated as-
sessment tools for grading of programming assignments:
A review,” in Intl. Conf. on Computer Communication
and Informatics (ICCCI), 2022, pp. 1–4.

[21] M. Martinez, W. Weimer, and M. Monperrus, “Do the fix
ingredients already exist? an empirical inquiry into the
redundancy assumptions of program repair approaches,”
in Companion Proc. of the 36th Intl. Conf. on Software
Engineering (ICSE). ACM, 2014, p. 492–495.

[22] W. Weimer, T. Nguyen, C. Le Goues, and S. Forrest, “Au-
tomatically finding patches using genetic programming,”
in 31st Intl. Conf. on Software Engineering (ICSE).
IEEE, 2009, pp. 364–374.

[23] Y. Yuan and W. Banzhaf, “Arja: Automated repair of
java programs via multi-objective genetic programming,”
IEEE Transactions on Software Engineering, vol. 46,
no. 10, pp. 1040–1067, oct 2020.

[24] D. Kim, J. Nam, J. Song, and S. Kim, “Automatic patch
generation learned from human-written patches,” in Intl.
Conf. on Software Engineering (ICSE). IEEE, 2013, pp.
802–811.

[25] J. R. Koza, Genetic programming: on the programming
of computers by means of natural selection. Cambridge,
MA, USA: MIT Press, 1992.

[26] R. Just, D. Jalali, and M. D. Ernst, “Defects4j: a database
of existing faults to enable controlled testing studies for

709

https://arxiv.org/abs/2102.09400
https://arxiv.org/abs/2405.05347
https://arxiv.org/abs/2405.05347


java programs,” in Intl. Symposium on Software Testing
and Analysis (ISSTA). ACM, 2014, p. 437–440.

[27] M. Martinez and M. Monperrus, “Astor: a program repair
library for java (demo),” in Intl. Symposium on Software
Testing and Analysis (ISSTA). ACM, 2016, p. 441–444.

[28] U. Z. Ahmed, Z. Fan, J. Yi, O. I. Al-Bataineh, and
A. Roychoudhury, “Verifix: Verified repair of program-
ming assignments,” ACM Trans. Softw. Eng. Methodol.,
vol. 31, no. 4, jul 2022.

[29] Q. Zhao, F. Liu, L. Zhang, Y. Liu, Z. Yan,
Z. Chen, Y. Zhou, J. Jiang, and G. Li, “Peer-
aided repairer: Empowering large language models to
repair advanced student assignments,” 2024. [Online].
Available: https://arxiv.org/abs/2404.01754

[30] W. X. Zhao, K. Zhou, J. Li, T. Tang, X. Wang, Y. Hou,
Y. Min, B. Zhang, J. Zhang, Z. Dong, Y. Du, C. Yang,
Y. Chen, Z. Chen, J. Jiang, R. Ren, Y. Li, X. Tang,
Z. Liu, P. Liu, J.-Y. Nie, and J.-R. Wen, “A survey
of large language models,” 2024. [Online]. Available:
https://arxiv.org/abs/2303.18223

[31] A. Fan, B. Gokkaya, M. Harman, M. Lyubarskiy, S. Sen-
gupta, S. Yoo, and J. M. Zhang, “ Large Language
Models for Software Engineering: Survey and Open
Problems ,” in 2023 IEEE/ACM International Conference
on Software Engineering: Future of Software Engineer-
ing (ICSE-FoSE). IEEE Computer Society, 2023, pp.
31–53.

[32] S. Ouyang, J. M. Zhang, M. Harman, and M. Wang, “An
Empirical Study of the Non-determinism of ChatGPT in
Code Generation,” ACM Trans. Softw. Eng. Methodol.,
Sep. 2024.

[33] F. Liu, Y. Liu, L. Shi, H. Huang, R. Wang, Z. Yang,
L. Zhang, Z. Li, and Y. Ma, “Exploring and evaluating
hallucinations in llm-powered code generation,” 2024.
[Online]. Available: https://arxiv.org/abs/2404.00971

[34] P. Runeson and M. Höst, “Guidelines for conducting and
reporting case study research in software engineering,”
Empirical Softw. Engg., vol. 14, no. 2, p. 131–164, 2009.

[35] M. M. Almasi, H. Hemmati, G. Fraser, A. Arcuri, and
J. Benefelds, “An industrial evaluation of unit test gen-
eration: Finding real faults in a financial application,”
in IEEE/ACM 39th Intl. Conf. on Software Engineering:
Software Engineering in Practice Track (ICSE-SEIP),
2017, pp. 263–272.

[36] T. Y. Zhuo, M. C. Vu, J. Chim, H. Hu, W. Yu,
R. Widyasari, I. N. B. Yusuf, H. Zhan, J. He,
I. Paul, S. Brunner, C. Gong, T. Hoang, A. R.
Zebaze, X. Hong, W.-D. Li, J. Kaddour, M. Xu,
Z. Zhang, P. Yadav, N. Jain, A. Gu, Z. Cheng, J. Liu,
Q. Liu, Z. Wang, D. Lo, B. Hui, N. Muennighoff,
D. Fried, X. Du, H. de Vries, and L. V. Werra,
“BigCodeBench: Benchmarking code generation with
diverse function calls and complex instructions,” 2024.
[Online]. Available: https://arxiv.org/abs/2406.15877

[37] M. Schäfer, S. Nadi, A. Eghbali, and F. Tip, “An em-
pirical evaluation of using large language models for

automated unit test generation,” IEEE Transactions on
Software Engineering, vol. 50, no. 1, pp. 85–105, 2024.

[38] M. Martinez and M. Martin, “Ultra-large repair search
space with automatically mined templates: The cardumen
mode of astor,” in Intl. Symposium on Search Based
Software Engineering (SSBSE). Springer, 2017.

[39] Y. Higo, S. Matsumoto, R. Arima, A. Tanikado,
K. Naitou, J. Matsumoto, Y. Tomida, and S. Kusumoto,
“kgenprog: A high-performance, high-extensibility and
high-portability apr system,” in Asia-Pacific Software
Engineering Conference (APSEC), 2018, pp. 697–698.

[40] T. Durieux and M. Monperrus, “IntroClassJava: A
Benchmark of 297 Small and Buggy Java Programs,”
Universite Lille 1, Research Report hal-01272126, 2016.

[41] C. Le Goues, N. Holtschulte, E. K. Smith, Y. Brun,
P. Devanbu, S. Forrest, and W. Weimer, “The manybugs
and introclass benchmarks for automated repair of c
programs,” IEEE Transactions on Software Engineering,
vol. 41, no. 12, pp. 1236–1256, 2015.

[42] T. Durieux, F. Madeiral, M. Martinez, and R. Abreu,
“Empirical review of java program repair tools: a large-
scale experiment on 2,141 bugs and 23,551 repair at-
tempts,” in ACM Joint Meeting on European Software
Engineering Conf. and Symposium on the Foundations
of Software Engineering (ESEC/FSE). ACM, 2019, p.
302–313.

[43] F. Long and M. Rinard, “An analysis of the search spaces
for generate and validate patch generation systems,” in
Intl. Conf. on Software Engineering (ICSE). ACM, 2016,
p. 702–713.

[44] A. Silva and M. Monperrus, “Repairbench: Leaderboard
of frontier models for program repair,” 2024. [Online].
Available: https://arxiv.org/abs/2409.18952

[45] M. Chen et al., “Evaluating large language models
trained on code,” 2021. [Online]. Available: https:
//arxiv.org/abs/2107.03374

[46] M. F. Roslan, J. M. Rojas, and P. McMinn, “An em-
pirical comparison of evosuite and dspot for improving
developer-written test suites with respect to mutation
score,” in Symposium on Search-Based Software Engi-
neering (SSBSE). Springer, 2022, pp. 19–34.

[47] M. Wen, J. Chen, R. Wu, D. Hao, and S.-C. Cheung,
“Context-aware patch generation for better automated
program repair,” in 40th Intl. Conf. on Software Engi-
neering (ICSE). ACM, 2018, p. 1–11.

[48] J. Yang, A. Zhikhartsev, Y. Liu, and L. Tan, “Better
test cases for better automated program repair,” in Pro-
ceedings of the 2017 11th Joint Meeting on Foundations
of Software Engineering, ser. ESEC/FSE 2017. ACM,
2017, p. 831–841.

[49] Z. Yu, M. Martinez, B. Danglot, T. Durieux, and
M. Monperrus, “Test case generation for program repair:
A study of feasibility and effectiveness,” 2017. [Online].
Available: https://arxiv.org/abs/1703.00198

710

https://arxiv.org/abs/2404.01754
https://arxiv.org/abs/2303.18223
https://arxiv.org/abs/2404.00971
https://arxiv.org/abs/2406.15877
https://arxiv.org/abs/2409.18952
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/1703.00198

	Introduction
	Background
	Test Generation
	Program Repair
	General Purpose Program Repair
	Educational Program Repair

	Programming Assignments
	Large Language Models

	Methodology
	Dataset
	Test Generation Tools
	Test Generation Methodology
	Program Repair Tools
	Program Repair Methodology
	Reference Solutions
	Incremental Repair
	Experiment Setup and Procedure


	Results
	RQ1: Test Generation
	RQ2: Program Repair
	Threats to Validity

	Findings and Discussions
	Test Generation
	Program Repair
	Implications for educators

	Related Work
	Conclusions and Future Work

